Tuesday, March 5, 2024
HomeMen HealthHow one gene shakes up our understanding of male infertility

How one gene shakes up our understanding of male infertility

In a recent article published within the journal Development, researchers investigate the role of the ACTL7B gene in sperm formation using Actl7b-deficient mice.

Study: Actl7b deficiency results in mislocalization of LC8 type dynein light chains and disruption of murine spermatogenesis. Image Credit: Komsan Loonprom / Shutterstock.com


ACTL7B, a testis-specific actin-related protein (Arp), shares as much as 60% amino acid identity with conventional actins and is extremely conserved in rodents and primates. In mice and humans, ACTL7B is expressed exclusively within the testis, thus suggesting a task in spermatogenesis. 

Several animal studies have associated ACTL7B with fertility, whereas studies involving human subjects have reported the presence of single nucleotide polymorphisms (SNPs) within the coding sequence of ACTL7B in cohorts of infertile men.

Nevertheless, these studies have circuitously implicated the ACTL7B gene with infertility. As well as, there stays an absence of studies elucidating the molecular function of ACTL7B.

In regards to the study

In the current study, researchers apply clustered usually interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated gene editing in zygotes of C57Bl/6J, a standard inbred strain of laboratory mice, to generate Actlt7b-deficient mice to investigate the role of ACTL7B in spermatogenesis. 

Two forms of Actlt7b-knockout (KO) mice were generated, which included heterozygous (Actl7b+/−) and homozygous (Actl7b−/−) mice. A genotyping polymerase chain response (PCR) assay was used to discriminate the Actl7bΔ allele from wild-type mice (Actl7b+/+) with alleles from Actlt7b-KO mice.

Immunohistochemical staining against ACTL7B was performed on tissue sections obtained from the testis, caput, and cauda epididymis from heterozygous (Actl7b+/−), homozygous (Actl7b−/−), and wild-type (Actl7b+/+) mice.

The presence of any structural defects, including acrosome biogenesis, DNA condensation, manchette formation, and sperm tail formation within the sperms of Actl7b-deficient male mice, was also determined using transmission electron micrography (TEM).

ACTL7B-protein interaction changes within the testicular proteome of Actl7b-deficient mice were also assessed. To this end, the researchers coupled anti-ACTL7B antibody to Dynabeads and used uncoupled beads as a control. Following this co-immunoprecipitation experiment, mass spectrometry (MS) was utilized to discover eluted proteins from whole testes of 5 mice from homozygous, heterozygous, and wild-type groups. 

Principal component evaluation (PCA) showed differential clustering of all three samples, whereas differential abundance (DA) evaluation revealed protein abundance in Actl7b+/− as in comparison with Actl7b+/+ samples.

An evolutionary evaluation of ACTL7A and ACTL7B genes was also performed, as these genes exhibit sequence similarity and are testis-specific. This evaluation allowed the researchers to match the conservation of those genes and predict their essentiality. 

Study findings

Spermatids of Actl7b-deficient mice were arrested during development, which subsequently led to the event of several abnormalities after step nine of spermatogenesis, including malformed flagella. Consequently, most spermatids were degraded. 

A few of these degrading spermatids collected within the lumen of the seminiferous tubules with other immature spermatids that were eliminated by Sertoli cells. This was confirmed by increasing levels of autophagy marker proteins in Actl7b−/− testes. 

MS analyses revealed that ACTL7B specifically interacted with dynein light chains LC8-Type 1 and Type 2 (DYNLL1 and DYNLL2), which appear in step nine of spermatogenesis. Moreover, ACTL7B appears to exert its effects through interactions with the microtubule network or dynein 1 motor complex, quite than the actin cytoskeleton.

Conversely, Actl7b+/− male mice exhibited reduced ACTL7B levels and remained similarly fertile as wild-type mice. 

Previously, Actlt7b-KO mice were reported to be infertile because of severe oligoteratozoospermia, in addition to malformed sperm tails and heads, and a 10-fold reduction in sperm counts as in comparison with wild-type mice. Nevertheless, in the present study, sperm counts in KO mice were about 32,000, which was a 1,000-fold reduction as in comparison with the roughly 32,000,000 sperm cells observed in wild-type mice. This is probably going because of phenotypical differences within the parental mouse strains used.

Each models exhibited reduced germ cell loss, epididymal sperm number, and immature germ cell release in and from the testis, together with several structural sperm abnormalities. 


As human and mouse ACTL7B genes are highly similar, the study results suggest that ACTL7B variants can result in failed spermatogenesis and male infertility in humans. Moreover, since ACTL7B could help distinguish between obstructive and non-obstructive azoospermia with high accuracy at translational and transcriptional levels, the presence of this gene could potentially be utilized as a biomarker for male infertility in the long run. 

Journal reference:

  • Merges, G. E., Arévalo, L., Kovacevic, A., et al. (2023). Actl7b deficiency results in mislocalization of LC8 type dynein light chains and disruption of murine spermatogenesis. Development 150(21). doi:10.1242/dev.201593
- Advertisement -spot_img
- Advertisement -spot_img
Must Read
- Advertisement -spot_img
- Advertisement -spot_img
Related News
- Advertisement -spot_img


Please enter your comment!
Please enter your name here